Aurora

From (The Plasma Universe Wikipedia-like Encyclopedia)

Jump to: navigation, search
The Aurora Borealis, or Northern Lights, shines above Bear Lake Wikimedia Commons picture of the year, 2006 Eielson Air Force Base, Alaska
Enlarge
The Aurora Borealis, or Northern Lights, shines above Bear Lake
Wikimedia Commons picture of the year, 2006 Eielson Air Force Base, Alaska
Aurora borealis
Enlarge
Aurora borealis

The aurora (plural aurorae/auroras) is a bright glow observed in the night sky, usually in the polar zone. For this reason some scientists call it a "polar aurora" (or "aurora polaris"). In northern latitudes, it is known as the aurora borealis (IPA Template:IPA), which is named after the Roman goddess of the dawn, Aurora, and the Greek name for north wind, Boreas. Especially in Europe, it often appears as a reddish glow on the northern horizon, as if the sun were rising from an unusual direction. The aurora borealis is also called the northern lights since it is only visible in the North sky from the Northern Hemisphere. The aurora borealis most often occurs from September to October and from March to April. Its southern counterpart, aurora australis, has similar properties. Australis is the Latin word for "of the South".

Contents

Auroral mechanism

Auroras are now known to be caused by the collision of charged particles (e.g. electrons), found in the magnetosphere, with atoms in the Earth's upper atmosphere (at altitudes above 80 km). These charged particles are typically energized to levels between 1 thousand and 15 thousand electronvolts and, as they collide with atoms of gases in the atmosphere, the atoms become energized. Shortly afterwards, the atoms emit their gained energy as light (see Fluorescence). Light emitted by the Aurora tends to be dominated by emissions from atomic oxygen, resulting in a greenish glow (at a wavelength of 557.7 nm) and - especially at lower energy levels and at higher altitudes - the dark-red glow (at 630.0 nm of wavelength). Both of these represent forbidden transitions of electrons of atomic oxygen that, in absence of newer collisions, persist for a long time and account for the slow brightening and fading (0.5-1 s) of auroral rays. Many other colors - especially those emitted by atomic and molecular nitrogen (blue and purple, respectively)[1] - can also be observed. These, however, vary much faster and reveal the true dynamic nature of auroras.

As well as visible light, auroras emit infrared (NIR and IR) and ultraviolet (UV) rays as well as X-rays (e.g. as observed by the Polar spacecraft). While the visible light emissions of auroras can easily be seen on Earth, the UV and X-ray emissions are best seen from space, as the Earth's atmosphere tends to absorb and attenuate these emissions.

Auroral forms and magnetism

An aurora
Enlarge
An aurora

Typically the aurora appears either as a diffuse glow or as "curtains" that approximately extend in the east-west direction. At some times, they form "quiet arcs"; at others ("active aurora"), they evolve and change constantly. Each curtain consists of many parallel rays, each lined up with the local direction of the magnetic field lines, suggesting that aurora is shaped by the earth's magnetic field. Indeed, satellites show auroral electrons to be guided by magnetic field lines, spiraling around them while moving earthwards.

The curtains often show folds called "striations", which are curtain-like. When the field line guiding a bright auroral patch leads to a point directly above the observer, the aurora may appear as a "corona" of diverging rays, an effect of perspective.

In 1741, Olof Hiorter (1696-1750) and Anders Celsius first noticed other evidence for magnetic control, namely, large magnetic fluctuations occurred whenever the aurora was observed overhead. This indicates (it was later realized) that large electric currents were associated with the aurora, flowing in the region where auroral light originated. Kristian Birkeland (1908)[1] deduced that the currents flowed in the east-west directions along the auroral arc, and such currents, flowing from the dayside towards (approximately) midnight were later named "auroral electrojets" (see also Birkeland currents).

Still more evidence for a magnetic connection are the statistics of auroral observations. Elias Loomis (1860) and later in more detail Hermann Fritz (1881)[2] established that the aurora appeared mainly in the "auroral zone", a ring-shaped region with a radius of approximately 2500 km around the magnetic pole of the earth, not its geographic one. It was hardly ever seen near that pole itself. The instantaneous distribution of auroras ("auroral oval", Yasha [or Yakov] Felds[h]tein 1963[3]) is slightly different, centered about 3-5 degrees nightward of the magnetic pole, so that auroral arcs reach furthest towards the equator around midnight.

Aurora australis
Enlarge
Aurora australis

The solar wind and magnetosphere

Schematic of Earth's magnetosphere
Enlarge
Schematic of Earth's magnetosphere

The earth is constantly immersed in the solar wind, a rarefied flow of hot plasma (gas of free electrons and positive ions) emitted by the sun in all directions, a result of the million-degree heat of the sun's outermost layer, the solar corona. The solar wind usually reaches Earth with a velocity around 400 km/s, density around 5 ions/cc and magnetic field intensity around 2–5 nT (nanoteslas; the earth's surface field is typically 30,000–50,000 nT). These are typical values. During magnetic storms, in particular, flows can be several times faster; the interplanetary magnetic field (IMF) may also be much stronger.

The IMF originates on the sun, related to the field of sunspots, and its field lines (lines of force) are dragged out by the solar wind. That alone would tend to line them up in the sun-earth direction, but the rotation of the sun skews them (at Earth) by about 45 degrees, so that field lines passing Earth may actually start near the western edge ("limb") of the visible sun (a numerical simulation of the solar wind illustrates that: Solar wind forecast).

The earth's magnetosphere is the space region dominated by its magnetic field. It forms an obstacle in the path of the solar wind, causing it to be diverted around it, at a distance of about 70,000 km (before it reaches that boundary, typically 12,000–15,000 km upstream, a bow shock forms). The width of the magnetospheric obstacle, abreast of Earth, is typically 190,000 km, and on the night side a long "magnetotail" of stretched field lines extends to great distances.

When the solar wind is perturbed, it easily transfers energy and material into the magnetosphere. The electrons and ions in the magnetosphere that are thus energized move along the magnetic field lines to the polar regions of the atmosphere causing the aurora.

Frequency of occurrence

Aurora australis 1994 from latitude 47 degrees south
Enlarge
Aurora australis 1994 from latitude 47 degrees south

The aurora is a common occurrence in the Poles. It is occasionally seen in temperate latitudes, when a strong magnetic storm temporarily expands the auroral oval. Large magnetic storms are most common during the peak of the eleven-year sunspot cycle or during the three years after that peak. However, within the auroral zone the likelihood of an aurora occurring depends mostly on the slant of IMF lines (known as Bz, pronounced "bee-sub-zed" or "bee-sub-zee"), being greater with southward slants.

Geomagnetic storms that ignite auroras actually happen more often during the months around the equinoxes. It is not well understood why geomagnetic storms are tied to the earth's seasons when polar activity is not. It is known, however, that during spring and autumn, the earth's and the interplanetary magnetic field link up. At the magnetopause, Earth's magnetic field points north. When Bz becomes large and negative (i.e., the IMF tilts south), it can partially cancel Earth's magnetic field at the point of contact. South-pointing Bz's open a door through which energy from the solar wind can reach Earth's inner magnetosphere.

The peaking of Bz during this time is a result of geometry. The interplanetary magnetic field comes from the sun and is carried outward the solar wind. Because the sun rotates the IMF has a spiral shape. Earth's magnetic dipole axis is most closely aligned with the Parker spiral in April and October. As a result, southward (and northward) excursions of Bz are greatest then.

However, Bz is not the only influence on geomagnetic activity. The Sun's rotation axis is tilted 8 degrees with respect to the plane of Earth's orbit. Because the solar wind blows more rapidly from the sun's poles than from its equator, the average speed of particles buffeting Earth's magnetosphere waxes and wanes every six months. The solar wind speed is greatest -- by about 50 km/s, on average -- around September 5 and March 5 when Earth lies at its highest heliographic latitude.

Still, neither Bz nor the solar wind can fully explain the seasonal behavior of geomagnetic storms. Those factors together contribute only about one-third of the observed semiannual variation.

Auroral events of historical significance

The auroras which occurred as a result of the "great geomagnetic storm" on both 28 August and 2 September 1859, are thought to be perhaps the most spectacular ever witnessed throughout recent recorded history. The latter, which occurred on September 2 as a result of the exceptionally intense Carrington-Hodgson white light solar flare on September 1, produced aurora so widespread and extraordinarily brilliant that they were seen and reported in published scientific measurements, ship's logs and newspapers throughout the United States, Europe, Japan and Australia. It was said in the New York Times that "ordinary print could be read by the light [of the aurora]". The aurora is thought to have been produced by one of the most intense coronal mass ejections in history, very near the maximum intensity that the sun is thought to be capable of producing. It is also notable for the fact that it is the first time where the phenomena of auroral activity and electricity were unambiguously linked. This insight was made possible not only due to scientific magnetometer measurements of the era but also as a result of a significant portion of the 125,000 miles of telegraph lines then in service being significantly disrupted for many hours throughout the storm. Some telegraph lines however, seem to have been of the appropriate length and orientation which allowed a current (geomagnetically induced current) to be induced in them (due to Earth's severely fluctuating magnetosphere) and actually used for communication. The following conversation was had between two operators of the American Telegraph Line between Boston and Portland, Oregon on the night of the 2nd and reported in the Boston Traveler:

Template:Quotation

The conversation was carried on for around two hours using no battery power at all and working solely with the current induced by the aurora, and it was said that this was the first time on record that more than a word or two was transmitted in such manner.[4]

The origin of the aurora

Aurora australis (September 11, 2005) as captured by NASA's IMAGE satellite, digitally overlaid onto the Blue Marble composite image.
Enlarge
Aurora australis (September 11, 2005) as captured by NASA's IMAGE satellite, digitally overlaid onto the Blue Marble composite image.

The ultimate energy source of the aurora is the solar wind flowing past the Earth.

Both the magnetosphere and the solar wind consist of plasma (ionized gas), which can conduct electricity. It is well known (since Michael Faraday's work around 1830) that if two electric conductors are immersed in a magnetic field and one moves relative to the other, while a closed electric circuit exists which threads both conductors, then an electric current will arise in that circuit. Electric generators or dynamos make use of this process ("the dynamo effect"), but the conductors can also be plasmas or other fluids.

In particular the solar wind and the magnetosphere are two electrically conducting fluids with such relative motion and should be able (in principle) to generate electric currents by "dynamo action", in the process also extracting energy from the flow of the solar wind. The process is hampered by the fact that plasmas conduct easily along magnetic field lines, but not so easily perpendicular to them. It is therefore important that a temporary magnetic interconnection be established between the field lines of the solar wind and those of the magnetosphere, by a process known as magnetic reconnection. It happens most easily with a southward slant of interplanetary field lines, because then field lines north of Earth approximately match the direction of field lines near the north magnetic pole (namely, into the earth), and similarly near the southern pole. Indeed, active auroras (and related "substorms") are much more likely at such times.

Electric currents originating in such fashion apparently give auroral electrons their energy. The magnetospheric plasma has an abundance of electrons: some are magnetically trapped, some reside in the magnetotail, and some exist in the upward extension of the ionosphere, which may extend (with diminishing density) some 25,000 km around the earth.

Bright auroras are generally associated with Birkeland currents (Schield et al., 1969;[5] Zmuda and Armstrong, 1973[6]) which flow down into the ionosphere on one side of the pole and out on the other. In between, some of the current connects directly through the ionospheric E layer (125 km); the rest ("region 2") detours, leaving again through field lines closer to the equator and closing through the "partial ring current" carried by magnetically trapped plasma. The ionosphere is an ohmic conductor, so such currents require a driving voltage, which some dynamo mechanism can supply. Electric field probes in orbit above the polar cap suggest voltages of the order of 40,000 volts, rising up to more than 200,000 volts during intense magnetic storms.

Ionospheric resistance has a complex nature, and leads to a secondary Hall current flow. By a strange twist of physics, the magnetic disturbance on the ground due to the main current almost cancels out, so most of the observed effect of auroras is due to a secondary current, the auroral electrojet. An auroral electrojet index (measured in nanotesla) is regularly derived from ground data and serves as a general measure of auroral activity.

However, ohmic resistance is not the only obstacle to current flow in this circuit. The convergence of magnetic field lines near Earth creates a "mirror effect" which turns back most of the down-flowing electrons (where currents flow upwards), inhibiting current-carrying capacity. To overcome this, part of the available voltage appears along the field line ("parallel to the field"), helping electrons overcome that obstacle by widening the bundle of trajectories reaching Earth; a similar "parallel voltage" is used in "tandem mirror" plasma containment devices. A feature of such voltage is that it is concentrated near Earth (potential proportional to field intensity; Persson, 1963[7]), and indeed, as deduced by Evans (1974) and confirmed by satellites, most auroral acceleration occurs below 10,000 km. Another indicator of parallel electric fields along field lines are beams of upwards flowing O+ ions observed on auroral field lines.

While this mechanism is probably the main source of the familiar auroral arcs, formations conspicuous from the ground, more energy might go to other, less prominent types of aurora, e.g. the diffuse aurora (below) and the low-energy electrons precipitated in magnetic storms (also below).

 The Aurora Borealis as viewed from the ISS Expedition 6 team. Lake Manicouagan is visible to the bottom left.
Enlarge
The Aurora Borealis as viewed from the ISS Expedition 6 team. Lake Manicouagan is visible to the bottom left.

Some O+ ions ("conics") also seem accelerated in different ways by plasma processes associated with the aurora. These ions are accelerated by plasma waves, in directions mainly perpendicular to the field lines. They therefore start at their own "mirror points" and can travel only upwards. As they do so, the "mirror effect" transforms their directions of motion, from perpendicular to the line to lying on a cone around it, which gradually narrows down.

In addition, the aurora and associated currents produce a strong radio emission around 150 kHz known as auroral kilometric radiation (AKR, discovered in 1972). Ionospheric absorption makes AKR observable from space only.

These "parallel voltages" accelerate electrons to auroral energies and seem to be a major source of aurora. Other mechanisms have also been proposed, in particular, Alfvén waves, wave modes involving the magnetic field first noted by Hannes Alfvén (1942), which have been observed in the lab and in space. The question is however whether this might just be a different way of looking at the above process, because this approach does not point out a different energy source, and many plasma bulk phenomena can also be described in terms of Alfvén waves.

Other processes are also involved in the aurora, and much remains to be learned. Auroral electrons created by large geomagnetic storms often seem to have energies below 1 keV, and are stopped higher up, near 200 km. Such low energies excite mainly the red line of oxygen, so that often such auroras are red. On the other hand, positive ions also reach the ionosphere at such time, with energies of 20-30 keV, suggesting they might be an "overflow" along magnetic field lines of the copious "ring current" ions accelerated at such times, by processes different from the ones described above.

Template:Video

Sources and types of aurora

Again, our understanding is very incomplete. A rough guess may point out three main sources:

  1. Dynamo action with the solar wind flowing past Earth, possibly producing quiet auroral arcs ("directly driven" process). The circuit of the accelerating currents and their connection to the solar wind are uncertain.
  2. Dynamo action involving plasma squeezed earthward by sudden convulsions of the magnetotail ("magnetic substorms"). Substorms tend to occur after prolonged spells (hours) during which the interplanetary magnetic field has an appreciable southward component, leading to a high rate of interconnection between its field lines and those of Earth. As a result the solar wind moves magnetic flux (tubes of magnetic field lines, moving together with their resident plasma) from the day side of Earth to the magnetotail, widening the obstacle it presents to the solar wind flow and causing it to be squeezed harder. Ultimately the tail plasma is torn ("magnetic reconnection"); some blobs ("plasmoids") are squeezed tailwards and are carried away with the solar wind; others are squeezed earthwards where their motion feeds large outbursts of aurora, mainly around midnight ("unloading process"). Geomagnetic storms have similar effects, but with greater vigor. The big difference is the addition of many particles to the plasma trapped around Earth, enhancing the "ring current" which it carries. The resulting modification of the earth's field allows aurora to be visible at middle latitudes, on field lines much closer to the equator.
  3. Satellite images of the aurora from above show a "ring of fire" along the auroral oval (see above), often widest at midnight. That is the "diffuse aurora", not distinct enough to be seen by the eye. It does not seem to be associated with acceleration by electric currents (although currents and their arcs may be embedded in it) but to be due to electrons leaking out of the magnetotail.

Any magnetic trapping is leaky--there always exists a bundle of directions ("loss cone") around the guiding magnetic field lines where particles are not trapped but escape. In the radiation belts of Earth, once particles on such trajectories are gone, new ones only replace them very slowly, leaving such directions nearly "empty". In the magnetotail, however, particle trajectories seem to be constantly reshuffled, probably when the particles cross the very weak field near the equator. As a result, the flow of electrons in all directions is nearly the same ("isotropic"), and that assures a steady supply of leaking electrons.

The energization of such electrons comes from magnetotail processes. The leakage of negative electrons does not leave the tail positively charged, because each leaked electron lost to the atmosphere is quickly replaced by a low energy electron drawn upwards from the ionosphere. Such replacement of "hot" electrons by "cold" ones is in complete accord with the 2nd law of thermodynamics.

Other types of aurora have been observed from space, e.g. "poleward arcs" stretching sunward across the polar cap, the related "theta aurora", and "dayside arcs" near noon. These are relatively infrequent and poorly understood. Space does not allow discussion of other effects such as flickering aurora, "black aurora" and subvisual red arcs. In addition to all these, a weak glow (often deep red) has been observed around the two polar cusps, the "funnels" of field lines separating the ones that close on the day side of Earth from lines swept into the tail. The cusps allow a small amount of solar wind to reach the top of the atmosphere, producing an auroral glow.

Auroras on other planets

Jupiter aurora. The bright spot at far left is the end of field line to Io; spots at bottom lead to Ganymede and Europa.
Enlarge
Jupiter aurora. The bright spot at far left is the end of field line to Io; spots at bottom lead to Ganymede and Europa.

Both Jupiter and Saturn have magnetic fields much stronger than Earth's (Uranus, Neptune and Mercury are also magnetic), and both have large radiation belts. Aurora has been observed on both, most clearly with the Hubble Space Telescope.

These auroras seem, like Earth's, to be powered by the solar wind. In addition, however, Jupiter's moons, especially Io, are also powerful sources of auroras. These arise from electric currents along field lines ("field aligned currents"), generated by a dynamo mechanism due to relative motion between the rotating planet and the moving moon. Io, which has active volcanism and an ionosphere, is a particularly strong source, and its currents also generate radio emissions, studied since 1955.

An aurora has recently been detected on Mars, even though it was thought that the lack of a strong magnetic field would not make one possible. [2]

"Voyager 2 also detected auroras similar to those on Earth, but Neptune's registered 50 million watts, compared to Earth's 100 billion watts and occurred over wide regions of the planet's surface."[8]

History of Aurora theories

In the past theories have been proposed to explain the phenomenon. These theories are now obsolete.

  • Auroral electrons come from beams emitted by the sun. This was claimed around 1900 by Kristian Birkeland, whose experiments in a vacuum chamber with electron beams and magnetized spheres (miniature models of the earth or "terrellas") showed that such electrons would be guided towards the polar regions. Problems with this model included absence of aurora at the poles themselves, self-dispersal of such beams by their negative charge, and more recently, lack of any observational evidence in space.
  • The aurora is the overflow of the radiation belt ("leaky bucket theory"). This was first disproved around 1962 by James Van Allen and co-workers, who showed that the high rate at which energy was dissipated by the aurora would quickly drain all that was available in the radiation belt. Soon afterwards it became clear that most of the energy in trapped particles resided in positive ions, while auroral particles were almost always electrons, of relatively low energy.
  • The aurora is produced by solar wind particles guided by the earth's field lines to the top of the atmosphere. This holds true for the cusp aurora, but outside the cusp, the solar wind has no direct access. In addition, the main energy in the solar wind resides in positive ions; electrons only have about 0.5 eV (electron volt), and while in the cusp this may be raised to 50–100 eV, that still falls short of auroral energies.

Auroral images

1936 Curteich Linen Postcard of Northern Lights, Alaska
Enlarge
1936 Curteich Linen Postcard of Northern Lights, Alaska
Images of aurora are significantly more common today due to the rise in digital camera use with high enough sensitivities. [3] Film and digital exposure to auroral displays is fraught with many difficulties, particularly if faithfulness of reproduction is an important objective. Due to the different spectral energy present, and changing dynamically throughout the exposure, the results are somewhat unpredictable. Different layers of the film emulsion respond differently to lower light levels, and choice of film can be very important. Longer exposures aggregate the rapidly changing energy and often blanket the dynamic attribute of a display. Higher sensitivity creates issues with graininess. David Malin pioneered multiple exposure using multiple filters for astronomical photography, recombining the images in the laboratory to recreate the visual display more accurately. [4] For scientific research, proxies are often used, such as ultra-violet, and re-coloured to simulate the appearance to humans. Predictive techniques are also used, to indicate the extent of the display, a highly useful tool for aurora hunters. [5] Terrestrial features often find their way into aurora images, making them more accessible and more likely to be published by the major websites. [6] It is possible to take excellent images with standard film (employing ISO ratings between 100 and 400) and an SLR with full aperture, a fast lens (f1.4 50mm, for example), and exposures between 10 and 30 seconds, depending on the aurora's display strength. 2001 image
  • Guide to seeing and imaging aurora australis here: Guide

Aurora in folklore

In Bulfinch's Mythology from 1855 by Thomas Bulfinch there is the claim that in Norse mythology:

The Valkyrior are warlike virgins, mounted upon horses and armed with helmets and spears. /.../ When they ride forth on their errand, their armour sheds a strange flickering light, which flashes up over the northern skies, making what men call the "aurora borealis", or "Northern Lights". [7]

While a striking notion, there is nothing in the Old Norse literature supporting this assertion. Although auroral activity is common over Scandinavia and Iceland today, it is possible that the Magnetic North Pole was considerably further away from this region during the centuries before the documentation of Norse mythology, thus explaining the absent references. [8]

The first Old Norse account of norðurljós is instead found in the Norwegian chronicle Konungs Skuggsjá from AD 1250. The chronicler has heard about this phenomenon from compatriots returning from Greenland, and he gives three possible explanations: that the ocean was surrounded by vast fires, that the sun flares could reach around the world to its night side, or that glaciers could store energy so that they eventually became fluorescent. [9]

An old Scandinavian name for northern lights translates as "herring flash". It was believed that northern lights were the reflections cast by large swarms of herring onto the sky.

Another Scandinavian source refers to "the fires that surround the North and South edges of the world". This has been put forward as evidence that the Norse ventured as far as Antarctica, although this is insufficient to form a solid conclusion.

The Finnish name for northern lights is revontulet, fox fires. According to legend, foxes made of fire lived in Lapland, and revontulet were the sparks they whisked up into the atmosphere with their tails.

In Estonian they are called virmalised, spirit beings of higher realms. In some legends they are given negative characters, in some positive ones.

The Sami people believed that one should be particularly careful and quiet when observed by the northern lights (called guovssahasat in Northern Sami). Mocking the northern lights or singing about them was believed to be particularly dangerous and could cause the lights to descend on the mocker and kill him/her.

The Algonquin believed the lights to be their ancestors dancing around a ceremonial fire.

In Inuit folklore, northern lights were the spirits of the dead playing football with human skulls over the sky. The Inuit also used the aurora to get their children home after dark by claiming that if you whistled in their presence they would come down and split their heads from their body to play football with it.

In Latvian folklore northern lights, especially if red and observed in winter, are believed to be fighting souls of dead warriors, an omen foretelling disaster (especially war or famine).

In Scotland, the northern lights were known as "the merry dancers" or na fir-chlis. There are many old sayings about them, including the Scottish Gaelic proverb "When the merry dancers play, they are like to slay." The playfulness of the merry dancers was supposed to end occasionally in quite a serious fight, and next morning when children saw patches of red lichen on the stones, they say amongst themselves that "the merry dancers bled each other last night". The appearance of these lights in the sky was considered a sign of the approach of unsettled weather.

Many prospectors during the Klondike Gold Rush believed that the Northern Lights were the reflection of the mother lode of all gold.

References

Template:Reflist

External links

Template:Commons

Personal tools